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Liquid-sodium-cooled breeder reactors may soon be operating at magnetic Reynolds 
numbers RM where magnetic fields can be self-excited by a dynamo mechanism (as 
first suggested by Bevir 1973). Such flows have kinetic Reynolds numbers Rv of the 
order of l o 7  and are therefore highly turbulent. 

This leads us to investigate the behaviour of MHD turbulence with high R V  and 
low magnetic Prandtl numbers. We use the eddy-damped quasi-normal Markovian 
closure applied to the MHD equations. For simplicity we restrict ourselves to  homo- 
geneous and isotropic turbulence, but we do include helicity. 

We obtain a critical magnetic Reynolds number RF of the order of a few tens (non- 
helical case) above which magnetic energy is present. RF is practically independent 
of Rv (in the range 40 to 106). RY can be considerably decreased by the presence of 
helicity: when the oT-era11 size of the flow L is much larger than the integral scale Z,, 
RF can drop below unity as suggested by an a-effect argument. When L x 1, the 
drop can still be substantial (factor of 6)  when helicity is a maximum. We examine 
how the turbulence is modified when RL*I crosses RF: presence of magnetic energy, 
decreased kinetic energy, steepening of kinetic-energy spectrum, etc. 

We make no attempt to obtain quantitative estimates for a breeder reactor, but 
discuss some of the possible consequences of exceeding RF, such as decreased turbulent 
heat transport. More precise information may be obtained from numerical simulations 
and experiments (including some in the subcritical regime). 

1. Introduction 
A common explanation of the magnetic fields observed on the Earth, the Sun and 

many other cosmic objects involving conducting fluid motion is the dynamo effect; 
when the magnetic Reynolds number R” is sufficiently large, the stretching of mag- 
netic field lines by velocity gradients may overcome the Joule dissipation. An arbitrary 
weak ‘seed’ field will then grow to a finite value and remain so as long as the flow is 
driven by some mechanism (Busse 1978; Moffatt 1978 and references therein). 

I n  an astrophysical or geophysical context, magnetic Reynolds numbers are 
generally much greater than unity. The situation is very different when MHD experi- 
ments are performedin the laboratory (for example, with liquid metals such as mercury 
or sodium). There are no particular difficulties in achieving substantial kinetic Reynolds 
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numbers, but the magnetic Reynolds numbers will generally be well below unity. 
This may be seen as a consequence of the smallness of the magnetic Prandtl number 
v/h (u = kinematic viscosity, h = magnetic diffusivity) of liquid metals, which is 
for mercury at room temperature and 10-5 for liquid sodium at 100 "C. At small 
magnetic Reynolds numbers, MHD effects can be present only if an external magnetic 
field is prescribed, such as in the MHD turbulence experiment reported by Alemany 
et al. (1979). 

As was pointed out first by Bevir (1973), a man-made dynamo involving only fluid 
motion could be the involuntary by-product of building large-scale breeder reactors 
(see also Pierson 1975; Gailitis, Freiberg & Lielausis 1977; LBorat, Pouquet & Frisch 
1979); for example, the liquid-sodium-cooled breeder reactor Superphenix under 
construction at Malville (France) will achieve kinetic Reynolds numbers Rg 1: 107 and 
in places, a magnetic Reynolds number RF, of about 50. The present workwas strongly 
motivated by this observation (which was brought to our attention by R. Moreau); 
however, we make no attempt to predict for Superphenix the precise value of the 
critical magnetic Reynolds number RZ, defined as the value of RF above which a 
self-excited dynamo becomes possible (we shall come back in the conclusion, $4,  to 
what is involved in trying to make such a prediction). Our aim is to gain a better 
understanding of the physics of conducting flows at  very low magnetic Prandtl 
numbers with high kinetic Reynolds numbers and magnetic Reynolds numbers near 
the critical value. Exactly what sort of questions we may hope to answer will be 
stated only after we have formulated the turbulent dynamo problem more precisely 
and discussed some of the existing results. This will be done in the remainder of this 
introduction. 

The flow of an incompressible conducting fluid is governed by the MHD equations: 

(a/at - vV2)v = - (v .  V)v-Vp+ (b . V) b + f ,  

(a /a t  -hV2) b = - ( v .  V) b + (b.  V)V,  

(1.1) 

(1.2) 

V . V = O ,  V.b=O,  (1.3) 

plus boundary and initial conditions; v is the velocity, b the magnetic field (rescaled 
to make it an Alfvhn velocity) and f an external force. 

From the linearity in b of the induction equation (1.2) it is clear that, when there 
is no externally prescribed magnetic field present at the boundaries, the MHD equa- 
tions admit non-magnetic solutions where b = 0 and v is a solution of the Navier- 
Stokes equation for non-conducting fluids. Let us assume that the force and the 
boundary conditions are such that the Navier-Stokes equation has a steady-state 
non-vanishing hydrodynamic solution. This can be a deterministic steady state with 
a time-independent velocity field (typically a t  low kinetic Reynolds numbers) or a 
statistical steady state (high kinetic Reynolds numbers) where the velocity is a random 
function stationary in time. In  this paper, we shall assume that randomness is 
established by driving the flow with prescribed stochastic forces which are stationary 
and homogeneous. It is conceivable that stochasticity in many MHD flows is of 
intrinsic nature. This is the case for a number of simple model systems where a 
'strange attractor' has been found (Lorenz 1963; Ruelle & Takens 1971; Martin 1976). 

The (turbulent) dynamo problem concerns the stability of the b = 0 solution: if a 
very weak 'seed' magnetic field is introduced at some time t = to, will it eventually 
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(t + co) decay to zero or will a new steady state be obtained with non-vanishing 
magnetic field and (generally) modified velocity field? An equivalent question is to 
have at all times a prescribed magnetic field BB, (e < 1) and to ask whether the steady 
state has a magnetic field O(E)  or O( 1). As is well known, if one is only interested in the 
stability of the solution and not in the modified magnetic steady state, the dynamo 
problem can be analysed in the so-called kinematical framework, where the velocity 
field is prescribed and only the induction equation (1.2) is studied. The existence of 
the dynamo effect has been demonstrated analytically with suitably chosen velocity 
fields (see, for example, Backus 1958) and numerically by integration of the induction 
equation (see, for example, Gubbins 1973). Numerically determined critical magnetic 
Reynolds numbers RE are often found in the range 10-100 (Roberts 1972; Gubbins 
1973; Pekeris, Accad & Shkoller 1973). Although this is precisely the range where 
Superphenix should be operating, the relevance is not immediately clear because all 
existing calculations assume velocity fields with only a few scales of motion, which are 
not a t  all typical of flows at  high kinetic Reynolds number. 

A turbulent flow may have three very distinct characteristic scales: (i) the overall 
scale of the flow L;  (ii) the integral scale lo, characteristic of energy-carrying eddies, 
which we shall use henceforth to define kinetic and magnetic Reynolds numbers 

RV = lovo/v, RM = lovo/h, (1.4) 

where wo is the r.m.s. velocity; (iii) the dissipation scale 1, below which viscous effects 
become important. According to the Kolmogorov (1941) theory 

Z,/& 22 (RV)it. (1.5) 

A possible small deviation from the Q exponent in (1.5) due to intermittency (Kolmo- 
gorov 1962; Frisch, Sulem & Nelkin 1978) seems of little relevance in the present 
context. 

Given the presence of three characteristic scales in the system, it is not immediately 
clear how we can construct a dimensionless number governing the dynamo effect 
(when such an effect exists). In a flow where L w I, w I,, for dimensional reasons, the 
critical magnetic Reynolds number RF, if it exists, must be a pure number. This is 
no longer so in a turbulent flow with two or three different characteristic scales: R,M 
may then functionally depend on LIZ, and l,/Z,. Some understanding of what the 
relevant parameters are can be obtained by using simple phenomenological arguments, 
most of which are rather standard (Kraichnan & Nagarajan 1967; Moffatt 1978 and 
references therein). It is useful to think of the induction equation (1.2) as describing a 
competition between (i) spatial transport of magnetic fields (v . Vb term), (ii) stretching 
of field lines by velocity gradients (b . Vv term), (iii) Joule dissipation (hV2b term). 
The rate of stretching is at  most sup lVvl (which we use here as it shorthand notation 
for the largest eigenvalue of the rate-of-strain tensor). The rate of dissipation, because 
it varies like the inverse square of the scale of the currents is, at  least, AL-2. This 
suggests as a necessary condition for a dynamo effect 

sup IVV( L2/A 2 1. (1.6) 

That (1.6) is indeed a necessary condition has been shown from a rigorous energy-type 
proof by Backus (1958). For high kinetic Reynolds numbers, we can estimate sup lVvl 
using the Kolmogorov (1941) theory; this gives us the inverse of the eddy-turnover 
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time evaluated at the dissipation scale I,. The Backus necessary condition for dynamo - 

effect becomes then 
RM(L/1,)2 ( lo/ la)# w RM(RV)* (L/1,)2 2 1, 

where RMand RV are based on the integral scale (definitions 1.4). A criticality criterion 
involving a competition between stretching at  scales w L and dissipation at scales 
w la should leave considerable room for improvement of (1.7). A much more stringent 
necessary condition for the dynamo effect is indeed provided by the Childress (1969) 
criterion, also based on a rigorous energy-type estimate: 

sup I v J  L/h w R'L/Eo 2 1.  (1.8) 

To get a better evaluation of RF, it is tempting to compare at  each scale 1 in the 
inertial range, the local stretching rate (the inverse of the local eddy-turnover time) 
with the local dissipation rate Al-2. Using again Kolmogorov (1941) estimates, we find 
that growth should take place at scales 1 such that 

(TJo/lo) ( l / l o ) - #  (AZ-2)-1 2 1. (1.9) 

RMz 1. (1.10) 

This is compatible with 1 being in the inertial range as soon as 

The trouble with the argument is that it completely ignores the effect of the advection 
term (v . V) b in the equation (1.2). Advection by a random velocity field does not 
directly change field strength but it is able to transfer magnetic energy from one scale 
to another. As we shall now see, this can be a source sometimes of enhanced damping 
and sometimes of enhanced growth of the field. 

Enhanced damping is due to an eddy-diffusivity mechanism: the advection by a 
random velocity field results in transfer of magnetic energy to small scales where it 
can be rapidly Joule dissipated. The magnetic eddy cliffusivity appropriate for scales 
= I, can be estimated by a standard random-walk argument, 

&ddy k l W O *  (1.11) 

The corresponding eddy-dissipation rate for scales z I ,  is vO/l,, the same as the rate 
of stretching. As noticed by Kraichnan & Nagarajan (1967)) with two competing 
mechanisms of the same characteristic time, the outcome is unclear, however large 
the magnetic Reynolds number. Actually, the outcome seems to depend on the 
dimension of space. In two dimensions, there is an antidynamo theorem implying that, 
for any finite magnetic Reynolds number, the steady-state magnetic energy is zero 
(Zel'dovich 1956). Note however that initial growth of a seed field and existence of a 
very long non-zero magnetic-energy plateau are not ruled out (Pouquet 1978). 

Enhanced growth of the magnetic field is known to take place in three-dimensional 
helical flows (Steenbeck, Krause & Radler 1966; see Moffatt 1978 for review). More 
precisely, assume that the following two conditions are met: (i) the flow is not statistic- 
ally mirror-symmetric, i.e. it has non-vanishing kinetic helicity 

Hv = Q(v. curlv) =# 0; (1.12) 

(ii) there is scale separation, L 9 1,. It may then be shown that, at scales 1 such that, 
L > 1 9 lo, the magnetic field satisfies, in the kinematical case, an equation of the form 

ab/at = (h +he,,,) V 2 b  + CXV x b; (1.13) 
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h e d d y  M l,v, is the turbulent magnetic diffusivity. The 'torsality ' 01 is a pseudo-scalar, 
of the order of HVl,/v, a t  high R''s and of the order of Hv'Ii/A a t  low R''s. The 01v x b 
term, which comes from the interplay of the stretching and the advection terms in the 
induction equation, induces growth of magnetic fields a t  scales M 1 with a rate M a/l. 
Since the diffusive damping rate is proportional to k2, growth will take over if suf- 
ficiently large scales are available. Specifically, growth requires 

O I L / ( A  +k.?ddy) 2 (1.14) 

Assuming maximal helicity ( I  HVI M vi/Zo) and using the low RM expression for a, we 
find a critical magnetic Reynolds number 

RF M (Zo/L)4 (1.15) 

which is much smaller than unity. 
Realistic flows generated in bounded vessels often have the integral scale 1, of the 

same order of magnitude as the largest scale L in the flow. The above analysis is then 
no more relevant and we cannot infer the effect of the helicity on the critical magnetic 
Reynolds number. There are many other questions for which simple phenomenological 
arguments do not provide an answer. Here is a list of such questions motivated by the 
breeder reactor problem: is there a critical magnetic Reynolds number RF in a non- 
helical flow a t  high kinetic Reynolds number? How does it depend on the kinetic 
Reynolds number? How is it affected by helicity? Then, assuming that RY exists, 
there is a second group of questions: How is the turbulence modified for RM > RF? 
How much magnetic energy is there? Are kinetic and magnetic energy of the same 
order, as suggested in a somewhat different context by Batchelor (1950), Biermann & 
Schliiter (1951), Kraichnan & Nagarajan (1967), Pouquet, Frisch & LBorat (1976)? 
If the turbulent flow has no preferred direction (isotropy), does this symmetry carry 
over to the magnetic field or will there be a mean magnetic field, as in a ferromagnet 
below the Curie temperature? Is the kinetic energy modified from its sub-RF value! 
Does the kinetic-energy spectrum still satisfy the Kolmogorov 12-4 law? Are the 
turbulent transport coefficients (of heat, momentum, etc.) modified? Note that the 
questions of the second group are beyond the scope of the kinematical approach and 
require the full nonlinear MHD equations. 

We now examine the tools available for such investigations. Work in MHD turbu- 
lence started in the late forties (see, for example, the review of Von Neumann 1949). 
In spite of the great expectations generated by the Kolmogorov (1941) theory, no 
major breakthrough has occurred in the theory of hydrodynamic turbulence, much 
less so in MHD turbulence. For ordinary turbulence, we have at  least a reasonable 
qualitative understanding based on phenomenological ideas (mixing length, eddy 
viscosity, turnover time, etc.). This allows us for example to calculate inhomogeneous 
flows using one-point closures (Launder, Reece & R,odi 1975). Success here can be 
explained schematically by the fact that in ordinary turbulence, where there is a 
simple dimensionless parameter (RV), many quantities are uniquely determined by 
dimensional constraints (within pure numerical factors). I n  MHD turbulence much 
more insight is needed to overcome the indeterminacies arising from the presence of 
two fields and two dimensionless numbers, particularly so when the magnetic Prandtl 
number v/h is very small. Probably the safest way t o  gain insight, in principle, is to 
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make experiments or numerical simulations (we shall come back to this in the con- 
cluding section). A not so direct but much more tractable approach is based on two- 
point closures of the kind used in MHD by Kraichnan (1958), Orszag & Kruskal 
(1968), Kraichnan & Nagarajan (1967), Pouquet et al. (1976). (For general reviews of 
modern closures, see Leslie 1973; Orszag 1977; Rose & Sulem 1978.) 

Let us briefly recall the ideas underlying the eddy-damped quasi-normal Markovian 
(EDQNM) closure, which we shall use in this paper (see Rose & Sulem 1978 for details 
in the hydrodynamic case and Pouquet et al. 1976, for the MHD case). An infinite 
hierarchy of 2,3 ,4 ,  . . . , n point correlation functions (cumulants) can be obtained 
from the MHD equations. This hierarchy is then truncated at the level of triple 
correlations (third-order cumulants) assuming that the terms involving fourth-order 
cumulants are representable as a modification (renormalization) of the viscous and 
diffusive damping rates of triple correlations. In  other words, the old idea of eddy 
viscosity and diffusivity, used for example in the Prandtl mixing-length theory, is 
implemented at  a higher level. Choices of the eddy-damping rates can be made which 
ensure that (i) the k-4 Kolmogorov spectrum is obtained when RV -+ co in the absence 
of magnetic field; (ii) in the MHD case, when Rv -+ co and RM -+ 03, one obtains 
Kraichnan’s (1965) k-3 spectrum which takes into account the effect of Alfv6n waves 
on the inertial range. 

For homogeneous isotropic helical MHD turbulence, the EDQNM closure leads to 
a system of integrodifferential equations for kinetic and magnetic energy and helicity 
spectra (see Pouquet et al. 1976, and appendix of this paper). Numerical integration 
of such equations is feasible even at  high Reynolds numbers. In the range where breeder 
reactors are likely to operate (RV z 107, R M  z l O - l O O ) ,  a typical run to obtain steady- 
state solutions takes less than a minute on IBM 370-168. Results of such calculations 
are reported in 3 3. 

Naturally, in having recourse to closure theory, we have to pay a price. Some 
questions we would like to ask become meaningless for homogeneous isotropic turbu- 
lence, such as: is there a symmetry-breaking mechanism leading to apreferred direction 
of the magnetic field ? For quantitative questions (e.g. how muchis the critical magnetic 
Reynolds number of this flow E ) ,  we can expect at  best orders of magnitude. However 
we are still in a position to investigate semi-quantitative questions (what is the in- 
fluence of RV onRp ? What is the influence of helicity when there is no scale separation 
between overall size and integral scale II How is the turbulence affected above Rr ‘1‘ etc.). 
In  tj 4 we shall discuss some of the possible implications of the closure-based results 
but also address questions which are beyond the scope of closure, suggesting new lines 
of investigations. 

2. Closure for homogeneous isotropic MHD turbulence 
T h e  EDQNM closure 

We use a modified version of the eddy-damped quasi-normal Markovian (EDQNM) 
approximation of Orszag (1970). The MHD version of this method has been introduced 
in a previous paper (Pouquet et al. 1976, henceforth called I), and has been reviewed 
elsewhere (Pouquet 1980). Notice that, although the EDQNM equations involve 
somewhat arbitrary phenomenological elements (e.g. the eddy-relaxation rates), 
identical results (up to second order in powers of the nonlinear terms) are obtained in 
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perturbation theory starting from the primitive MHD equations (1.1)-( 1.3). Several 
essential structural properties of these last equations are shared by the closure equa- 
tions : conservation of total energy and magnetic helicity by the nonlinear interactions, 
existence of kinetic and magnetic helicity effects acting upon large-scale magnetic 
excitation (see I), absence of dynamo effect in the two-dimensional case (Pouquet 
1978). 

The EDQNM closure leads to a set of four coupled integrodifferential nonlinear 
equations for the kinetic and magnetic energy and helicity spectra. The full equations 
are given in the appendix in a slightly different form from that in I. Although some 
analytical results can be obtained from these equations (see I), study of magnetic 
criticality relies upon numerical techniques of integration which we shall now describe 
briefly. 

Numerical procedure 

Numerical calculations performed on the closure equations can be done at high 
Reynolds number, of the order of 106 or greater, as opposed to a few tens presently 
reached for three-dimensional direct integration of the primitive MHD equations. 
This is due to the description of homogeneous isotropic turbulence in terms of wave- 
numbers and to the smoothness of the spectra, allowing an exponential discretization 
in wavenumbers. To follow the evolution of an initial magnetic field towards a steady 
state, the spectral equations can be integrated in time. In the vicinity of the critical 
magnetic Reynolds number, henceforth called critical region ( RM N R f  ), characteristic 
time scales become very large and the study of stationary solutions is best obtained 
with an iterative method first introduced by Leith (197 1) in the context of non-magnetic 
two-dimensional turbulence. Let us first outline the iterative procedure for non-helical 
non-magnetic turbulence. The EDQNM equations read 

(a/at + 2vk2 -dL) E$ = 43; + FZ, (2.1) 

where dg and 9!, which stem from the nonlinear terms, are expressible as integrals 
depending on the kinetic-energy spectra (see appendix for detailed expressions). - d$ 
is called the ‘absorption ’ term (it reduces to a positive eddy-viscosity term when the 
mode k interacts with wavenumbers p 9 k); $?#L is shown to be always positive and is 
called the ‘emission’ term; it represents an input of energy into the mode k by non- 
linear interactions among all other modes. In the iterative scheme for stationary solu- 
tions the zeroth-order solution F$/ (  2vkZ) neglects nonlinearities; then the nth-order 
solution is used to calculate the 9;’s and d $ ’ s  which respectively modify the force 
and the viscosity. At the (n+ 1)th order of iteration, the stationary kinetic-energy 
spectrum E;(n + 1) is thus given by 

E[(n + 1) = (43‘p(n) + F ; ) / ( 2 v k 2  -d$(n)).  ( 2 . 2 )  

The MHD version is a matrix extension of this procedure (see appendix). Use of the 
iterative method is straightforward in the non-helical case. In the presence of helicity, 
however, two problems arise : possible occurrence of negative energy spectral densities 
due to ill-suited starting spectra, and accumulation of magnetic excitation a t  the lowest 
wavenumber. The former problem is solved by introducing small corrective terms in 
the first few iterations, convergence thus being obtained in all cases. The latter problem 
arises because the inverse transfer by helicity effects leads to very high excitation near 
the minimum wavenumbers kmin (see I). This in turn affects adjacent wavenumbers. 
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Spectral energy densities 
r \ Total 
k = 0.25 k = l  k = 8  k = 64 energy 

3000 time steps E V  0.330 1.41 0.0241 0.66 x 2.356 
E M  0.619 x 10-3 0.0737 0.0110 0.89 x lo-’ 0.479 

180 iterations E V  0.333 1.40 0.024 0.44 x 2.345 
E M  0.608 x 0.0742 0.0103 0.56 x lo-’ 0.473 

TABLE 1. Comparison of temporal integration and iterative method in the critical region (non- 
helical turbulence; km,,,fk,, = 0.25, kma,fko = 861; RV = 2150, R M  = 43). The iterative pro- 
cedure is ten times faster than the time integration method in this case. 

The lower truncation in wavenumber space is a numerical constraint contradictory to 
the hypothesis of unbounded turbulence. To handle this unphysical accumulation, a 
suitable boundary condition is introduced: the missing large scales (0  < k < k m i n )  are 
parametrized by a magnetic helicity dissipation term on wavenumber k m i n ,  which 
compensates exactly the emission term .%;"tin (appendix, equation (A 8)). Comparison 
between integration in time and the iterative method is given in table 1 for magnetic 
non-helical turbulence. Iteration is stopped when the relative variations of the 
magnetic and kinetic energies are less than 1 yo over 40 successive iterations; the 
iterative method saves a factor 10 in computing time for the case quoted in table 1. 

We recall a final technical point before proceeding to  the description of the results. 
Triad interactions between modes, k , p ,  q, can be ‘local’ (i.e. characteristic scales k-l, 
p - l ,  q-l of the same order of magnitude) or ‘non-local’ (i.e. widely separated scales). 
The exponential discretization in wavenumbers does not allow for the latter-type 
interactions (Lesieur & Schertzer 1978). As in I, such non-local interactions have 
been calculated separately. 

3. The critical region 
Introduction 

Our aim is twofold: determination of the critical magnetic Reynolds number R,M 
above which a magnetic steady state obtains, and study of the supercritical regime 
(RM 2 RP). The former problem needs only a kinematical framework (the reaction 
of the magnetic field on the velocity field plays no role), but the latter one must be 
studied with the full nonlinear equations. However, even in the kinematical case, the 
linearized EDQNM equations have a complex int>egrodifferential structure which 
does not seem to yield analytical results straightforwa,rdly. For that reason, we resorted 
to a numerical study of the critical region both in the kinematical and in the nonlinear 
framework. Still two approaches are available to determine R f :  temporal evolution 
towards a steady state or iterative computation. We chose the latter, as it is generally 
faster. We first give an overview of the parameters which can influence the value of 
RF in the EDQNM calculations for the non-helical case. The characterization of the 
supercritical regime (RM > RF) follows; we then proceed to  describe the temporal 
evolution of the system to its steady state and finally reserve a separate paragraph for 
the helical case. 
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1 

E 

0 
25 30 35 40 

R M  

FIGURE 1. Steady-state kinetic (EV), magnetic (EM), and total (Ev+EM) energies per unit 
mass in the critical region (non-helical turbulence; km,Jk, = 0.25, k-Jk0 = 860; RV = 2.3 x 10' 
in the subcritical state). Notice the bifurcation to a magnetic state that occurs at R$ N 29. 

The critical magnetic Reynolds number 

Various quantities relevant to the problem of magnetic criticality are now defined. 
The kinetic-energy injection spectrum FL is a strongly peaked function around wave- 
number k, (k, is taken equal to unity in the computations). The total kinetic energy 
injection rate (s is given by 

8 = y m a x F p d k ,  (3.1) 
kmin 

where k,,, and k,,, are respectively the minimum and maximum wavenumbers. 
The kinetic Reynolds number RV, defined in (1.4), is 

In non-magnetic turbulence, the characteristic rates of nonlinear stretching and of 
viscous dissipation become roughly equal at  the kinetic Kolmogorov dissipation 
wavenumbar 

To ensure proper dissipation we need kz < k,,,. This inequality limits the attainable 
Reynolds numbers for a given k,,,. The magnetic Reynolds number RM is 

(3.3) kg = (+3)4. 

R M  = Rvv/h. (3.4) 

Note that both Reynolds numbers are based on turbulent quantities, r.m.s. velocity 
and wavenumber of energy-containing eddies. In contrast, the magnetic Reynolds 
number R$ introduced in 3 1 is based on mean quantities (mean velocity and overall 
size of the flow). 
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RV 44 2.1 x 103 106 

RCM 25 29 29 

TABLE 2. Variation of the critical magnetic Reynolds number with the kinetic Reynolds number 
(non-helical turbulence; km,,,/’kn = 0.25). 

k*,,lko 8 x 10-2 0.25 1. lt 
R,M 27 29 80 30 

This case has magnetically accessible scales four times larger than kinetic ones (see text). 

TABLE 3. Variation of the critical magnetic Reynolds number with the aspect ratio k,,,fk, 
(non-helical turbulence ; RV= 2 x lo4). Notice the inhibition of the dynamo effect when the integral 
scale and the overall size of the flow are comparable (k,Jk,, := 1). 

The iterative method described in $ 2  is used to obtain the value of the critical 
magnetic Reynolds number: below RF, the steady state is purely non-magnetic, 
whereas above RY non-zero magnetic energy obtains in the steady state. Figure 1 
shows the stationary kinetic, magnetic and total energies as a function of RM for a 
typical case(kmin/k, = 0-25, RV z 2.3 x lo4). Direct inspection of figure 1 gives a critical 
magnetic Reynolds number RF N 29. 

Most determinations to date of the critical magnetic Reynolds number were done 
in the kinematical framework with a given velocity field made up of a few cells only. 
The R,M found above, on the other hand, is obtained for a fully turbulent flow. As 
expected the kinetic Reynolds number has very little influence on the critical value 
of the magnetic Reynolds number (see table 2 for a typical case: kmin/ko = 0.25, E = 1, 
no helicity). We observe almost no variation of RF in the wide range of kinetic 
Reynolds numbers explored. This is not surprising since magnetic-energy generation in 
the critical regime occurs mainly in the energy range (k z k,), where the kinetic-energy 
spectrum is not affected by molecular viscosity. Our result is not consistent with a 
conjecture of Batchelor (1950) that the critical magnetic Reynolds number should be 
of the order of the kinetic Reynolds number. Notice that the lowest values of the kinetic 
Reynolds numbers quoted in table 2 are in the range now accessible by direct numerical 
simulations of the primitive MHD equations (see 8 4). 

The precise value of RY may also depend on the energy range through (at least) two 
parameters: (i) the ratio of the minimum wavenumber k m i n  to the wavenumber k, of 
energy-containing eddies; (ii) the shape of the energy spectrum. The ratio k,i,/ko is 
essentially &/L, where I ,  is the integral scale of the kinetic turbulence and L the overall 
size of the system. Table 3 shows the variation of RF with this ratio. A possible inter- 
pretation, suggested to us by F. Busse (private communication), is that it is difficult 
to excite a magnetic field when the flow has essentially only one big eddy ( I ,  z L) .  
Notice however that (in the non-helical case) it hardly matters whether there are 4 or 
12 large eddies. The last column of table 3 refers to a case where the overall size of 
the flow is equal to the injection scale ( I ,  = L )  but the overall size of the conducting 
(magnetic) region is larger (by a factor 4 in this calculation). This is to some extent 
the analogue of spherical dynamos with conducting boundaries (Bullard & Gubbins 
1977). Currents flowing outside the (kinetic) energy container have a greater scale 
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FIGURE 2. Steady-state magnetic energy ( E M )  and kinetic-energy deviation from its subcritical 
value (ELb-EV) in the vicinity of the critical magnetic Reynolds number as a function of 
A,-h (logarithmic co-ordinates). The straight lines represent power laws E N (h,-h)b with 
A, N (8k0.1) x and /3 N 0.68k 0.05 (same conditions as in figure 1; RF N 29.2). This 
representation is accurate when (A,-A)/& 5 0.1. 

and their characteristic diffusion time is increased, thereby favouring magnetic-energy 
generation. For example, in a flow with two radial cells, Bullard & Gubbins found that 
RE decreases from 57 to 38 when the boundaries turn from isolating to conducting. 
Although o w  result (B," decreases from 80 to 30) is obtained under turbulent con- 
ditions, we note that the magnitude of the effect is analogous. 

We have tested the influence on R,M of the shape of the spectral distribution of the 
kinetic energy by comparing two kinematically prescribed turbulent flows : one with 
a Kolmogorov range and the other with a flat spectrum extending over two octaves. 
In  both computations the total kinetic energies are the same and kmin/ko = 0.25. In 
the f i s t  case R," 21 29, whereas in the second RY 2: 33. 

Another factor which can affect the critical value of the magnetic Reynolds number 
through its influence on the kinetic-energy spectrum is the Kolmogorov constant KO 
(which is obtained from experimental data). In  the EDQNM calculations, K O  is 
related to the adjustable parameter of the closure, the constant C, appearing in the 
triad relaxation time (equation (A 19)). I n  this paper, C, = 0.26 corresponding to 
the commonly accepted value KO = 1.4 (Monin & Yaglom 1975). Other values of the 
Kolmogorov constant can be simulated by simply adjusting C,, which in turn modifies 
RF. For example KO = 1.1, which seems to be an experimental lower bound, yields a 
critical magnetic Reynolds number R," = 24. More details will be given below in the 
study of the critical region. 

To conclude we stress that the critical magnetic Reynolds number for non-helical 
turbulence in the framework of the EDQNM closure is of the order of 30 over a wide 
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h 1/12 1112.6 1/12.7 1/13 1/13.5 1/14 1/15 1/20 

E V  2.76 2.69 2.65 2.54 2.40 2.30 2.17 1.89 
E M  0 0.029 0.045 0.095 0.158 0.204 0.278 0.479 
R M  28.40 29.22 29.25 29.30 29.60 30 31.30 39 

TABLE 4.  Kinetic and magnetic energies in the critical region (non-helical turbulence, k,,,/k, = 0.25). 
The only external parameter that is varied in these calculations is the magnetic diffusivity A. 

range of parameters. I n  particular, its dependence on the kinetic Reynolds number is 
so small that calculations with laminar flows may have some relevance. Note however 
that the precise way the energy is injected will have some influence. It was already 
pointed out in $ 1  that RF is plausibly larger than 1 because stretching and turbulent 
magnetic diffusion have comparable characteristic times. The fact that  RF is more 
than one order of magnitude above unity indeed indicates that this competition is a 
tight one. 

The supercritical steady state 

We now turn to a more detailed description of the st,eady state obtained in MHD 
turbulence with the EDQNM closure. At low magnetic Reynolds numbers, the 
stationary solution is non-magnetic: for any starting magnetic spectrum, the final 
state has zero magnetic energy and the kinetic-energy spectrum follows the Kolmogo- 
rov law. When RM grows, a bifurcation occurs in the solution of the spectral equations: 
the non-magnetic solution turns unstable a t  RM = RY and a stable magnetic-energy 
spectrum is obtained for Rqf > RF. Table 4 gives the steady-state values of the kinetic 
and magnetic energies as a function of the magnetic diffusivity h and the magnetic 
Reynolds number. 

Bifurcation phenomena have generally well-defined exponents. Because of the very 
unusual structure of the EDQNM equations we have not yet been able to analyse 
theoretically the neighbourhood of Rp. We do however have good numerical evidence 
that there are simple exponents associated with the R,M bifurcation. First, we determine 
the variation of the steady-state magnetic energy E M  as a function of R'. For a choice 
of parameters such that k, i , /k ,  = 0.25, RV = 2 x 104 and RY = 29, we obtain, for 
R M  > RF, the empirical law 

The exponent p' given in table 5 appears to be very sensitive to the value of the 
Kolmogorov constant KO. Notice however that RMis based on the integral scale which 
itself changes above RY, because the kinetic-energy spectrum changes. A much more 
nearly universal behaviour obtains in terms of the magnetic diffusivity : 

EM cc (RM-  Rf)F. (3.5) 

EM K (h,-h)fl. (3.6) 

p, given in table 5, is equal to  0.68 5 0.05 independently of K,. It appears likely that 
it is in fact exactly +. The same exponent holds also for the deviation of the kinetic 
energy from its subcritical value (see figure 2).  

The supercritical steady state is drastically different from the subcritical one, even 
close to RTf. It can be seen on figure 1 that a t  RM = 35, in a case where RF = 29, the 
magnetic energy represents 17 yo of the total energy and the kinetic energy has dropped 
by 28 yo from its subcritical value. This in turn will affect the turbulent transport 
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KO A, B R f  p’ 
1.1 0.08 0.68 24 0.32 
1.4 0.087 0.68 29 0.50 

TABLE 5. Influence of the Kolrnogorov constant KO on the critical parameters A,, P, R f  and /3’. 
Note that the critical exponent /3 seems to be insensitive to KO. 
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FIGURE 3. Steady-state spectra of magnetic ( E f ,  solid line) and kinetic (EL, dashed line) 
energies for RM 2 39 (non-helical turbulence; k,,,/ko = 0.25) ; the subcritical kinetic-energy 
spectrum is also shown (dotted line, EL - k-”, m N + in the inertial range). At R N 39 

21 29), there is an inertial range for the kinetic (magnetic) spectrum with exponent rn N 2.4 
(n?’ N 4.4). 

coefficients (such as diffusivity and thermal conductivity) since they depend on the 
r.m.s. velocity. This point will be discussed further in § 4 as to its consequences for 
realistic flows in the critical region. 

Our closure method allows us to investigate not only overall quantities such as EV 
and EM, but also their detailed spectral distribution. Below RF the kinetic-energy 
spectrum follows the Kolmogorov law EE N k-8 in the inertial range 

k,  < k < k, z (e /v3)4  

(see figure 3). Above RF the Lorentz force becomes relevant and we do not a priori  
expect to find a Kolmogorov spectrum. Actually, calculating at R” = 39 in a situation 
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where RF 21 29, we found that the kinetic-energy spectrum follows a much steeper 
power law EL N k-" with m N 2.4; the magnetic-energy spectrum follows an even 
steeper law E f  N krn' with m' N 4.4 (see figure 3). 

We now indicate a possible interpretation of these results. At wavenumbers k 9 k,  
the local magnetic Reynolds number is small. Thus the distortion of large-scale 
magnetic fields by small-scale velocity gradients is strongly limited by Joule 
dissipation. The resulting small-scale magnetic fields are proportional to the small- 
scale velocity gradients, the coefficient of proportionality being roughly b,/(hk2),  
where b, is the r.m.s. large-scale field. From this we find that 

E f  M (bo/(hk2))2 k2Eg cc k-2Eg. (3-7) 

This explains that the kinetic- and magnetic-energy spectral exponents differ by 
exactly two units. The same kind of argument was applied by Golitsyn (1960) and 
Moffatt (1961) to derive a k - Y  law for E f  in the subcritical regime with an external 
magnetic field. Next, we notice that the dominant contribution to the small-scale 
Lorentz force comes from the cross-product of large-scale magnetic fields with small- 
scale currents. Hence the local Lorentz force is proportional to the local velocity 
amplitude, the coefficient being b $ / A  with no k dependence. Actually this is a standard 
calculation for flows a t  low magnetic Reynolds number in the presence of a magnetic 
field (see for example appendix A of Alemany et al. 1979). One then finds that the 
Lorentz force reduces to a linear dissipation term with no k dependence but an angular 
dependence. For the case of isotropic turbulence, the angular dependence drops out. 
It seems that competition between nonlinear transfer and such a k-independent dissi- 
pation does not lead to  the exponential fall-off which obtains for k2-type diffusive 
dissipation. More likely, as suggested by Alemany et al. (1979),  an equilibrium will be 
achieved between local transfer ( - k-$(Eg)s) and dissipation ( N EL);  this results in 
a k-3 energy spectrum? (with possible logarithmic corrections). I n  this context it is 
of interest to recall that  a k-3 spectrum has been observed by Alemany et al. (1979) 
in turbulence a t  low magnetic Reynolds number when the external magnetic field is 
sufficiently strong. The above argument is only tentative; we notice too that the 
EDQNM exponent is m 2: 2.4, not m N 3. It is conceivable that the proximity to RF 
produces some contamination by the k-8 subcritical spectrum. This question requires 
further investigation. 

Temporal evolution 

To study the approach in time to the steady state, we also perform time-dependent 
calculations in the critical region. We take as initial conditions a seed magnetic field 
lying in the energy range ( k  z k,) of a developed hydrodynamical turbulence with a 
Kolmogorov spectrum. The total magnetic energy is EM = l0-3EV at t = 0 and we 
vary the magnetic diffusivity A. Figure 4 shows the time evolution of the total mag- 
netic energy for various A ;  even when RM < RF, there is at first a growth of the 
magnetic energy. This lasts only a few large eddy-turnover times. A similar increase 
is also found in two-dimensional turbulence a t  high kinetic and magnetic Reynolds 
numbers (Pouquet 1978), although it is known that the steady state is non-magnetic. 
For Raf < RF, all the magnetic modes will eventually decay and the magnetic energy 
drops to zero. For RM > RF, the magnetic steady state that  occurs is found to be 

t Notice also that the kS spectrum will be cut off by viscosity at wavenumbers such that the 
viscous diffusion time (vk2)-1 becomes smaller than the turnover time (PEL)-4. 
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FIUURE 4. Evolution of the magnetic energy for different magnetic diffusivities. The time is 
in units of the eddy-turnover time at wavenumber k ,  (ratio of magnetic to kinetic energy 
initially (a) h = 0.1, the magnetic energy eventually decreases to zero. ( b ) ,  ( c )  h = 0.05, 
the steady state is magnetic. For ( b )  E f ( t  = 0) a k4 exp ( - 2k2) and for ( c )  the initial magnetic 
energy is concentrated at  k = k ,  = 1. ( d )  h = 3 x (case studied in I). Notice the common 
short growth until t N 3 and the long time required to  reach saturation above RY. 

independent of the initial magnetic-energy spectrum (compare in figure 4 curve b 
for which E f ( t  = 0) cc k4 exp ( - 2k2) and curve c for which the initial magnetic energy 
is concentrated in a single mode k = ko) .  Notice that, close to  RF, the time scale to 
reach the steady state becomes very long. This 'critical slowdown', due to the fact 
that an eigenvalue of the linearized equation crosses the value zero, makes the time- 
integration method much slower than the iterative method for the determination of 
the critical magnetic Reynolds number. Figure 5 gives the kinetic and magnetic energy 
spectra for different times when the magnetic Reynolds number is 43 (RF N 29) .  The 
initial kinetic-energy spectrum is of the Kolmogorov type, (E"/EV),,, = with 
the initial magnetic energy concentrated in the large scales ( k  z ko) .  At first, the 
magnetic energy spreads towards the small scales, until it reaches the dissipation 
scale. I n  the next phase the magnetic energy experiences a slower exponential growth: 
in the example of figure 5 ,  the total magnetic energy is amplified by an order of magni- 
tude between t = 10 and t = 60. At t = 60 the ratio EM/EV is 5 x the character- 
istic growth time is only weakly dependent on wavenumber in the energy range and 
is roughly 21 turnover times. At later times the Lorentz force becomes significant; 
the kinetic-energy spectrum steepens (see preceding paragraph) and the growth rate 
of the magnetic energy drops to  zero. 
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FIQURE 5. Kinetic- (dashed lines) and magnetic- (solid lines) energy spectra (non-helical turbu- 
lence ; k,,,/ko = 0.25) for different times. Initial conditions : developed kinetic spectrum 
(Rv -h 2.1 x lo3) and ( E M / E V ) , = ,  = 10-3 (E%(t = 0)  cc k4 exp ( - 2 1 ~ 2 ) ) .  Notice the decrease of 
the kinetic energy in the small scales. 

h 10-1 5 x 10-8 3 x 10-2 3 x 10-8 10-6 

( W W O  5-6 9.5 14 78 3.2 x 104 
V / k O  2 3.4 4.8 6 8 

TABLE 6. Influence of magnetic diffusivity on the wavenumber k,M 
of maximum magnetic-energy growth. 

As a last point, let us mention, as it may be interesting for experimental purposes, 
the dependence of the wavenumber k r  of maximum magnetic-energy growth upon 
the magnetic diffusivity A. This is shown in table 6 above. Note that this result does 
not seem to be consistent with the scaling iif - ( € / A 3 ) %  proposed by Kraichnan & 
Nagarajan (1967). 
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FIGURE 6. Variation of the critical magnetic Reynolds number with the relative rate of helicity 
injection i (0 < lil < 1) when scale separation holds (lcm,Jk,, = 8 x Critical magnetic 
Reynolds numbers below unity are obtained when (il >, 0.1. 

17 I 

InJluence of helicity 

When the overall size of the system is much greater than a typical kinetic-energy- 
containing scale (kmin < ko) ,  it is known (see $ 1 )  that kinetic helicity plays an impor- 
tant role in the generation of large-scale magnetic fields. In the linear theory, after 
averaging over small scales of helical turbulence, an aV x b term which destabilizes 
the large scales appears in the induction equation (Steenbeck et al. 1966). We therefore 
expect that the critical magnetic Reynolds number is reduced when the turbulence 
is helical. In the nonlinear regime helical turbulence will not produce indefinite growth 
of the magnetic field: as shown in I saturation comes about from an interplay of 
kinetic helicity, magnetic helicity and Alfv6n waves. 

We investigate the dependence of RF on helicity by using the helical EDQNM 
spectral equations (see appendix); in non-mirror symmetric turbulence, the forcing 
correlation function includes a pseudo-scalar contribution corresponding to the 
helicity injection spectrum PL. The total rate of helicity injection d is defined as 

We choose the relative rate of helicity injection i (0 < 171 < 1) 

i = %,V/(kF[) (3.9) 

to be independent of wavenumber. When li( = 1, helicity is said to be injected at 
maximal rate. 

We first consider the variation of RF with the relative rate of helicity injection i 
when there is a wide scale separation (kmin/ko = 8 x Figure 6 shows a rather 
sharp changeover of roughly one order of magnitude in RF around t 2: we 
stress that even a very small amount of helicity leads to strong reduction in R f ;  for 
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krn,nlk, s x 10-3 0.25 1 

P = O  21 29 80 

P =  1 0.3 2 13 

TABLE I .  Influence of helicity on the critical magnetic Reynolds number 
for various ratios krn,Jk,,. i = 0, no helicity; i = 1 ,  maximal helicity. 

example, for F = 10-2, RF 2: 3 (R,M N 27 in the non-helical case). Notice also that the 
critical magnetic Reynolds number has dropped below unity in the case of maximal 
helicity injection (i = 1).  As already seen from the phenomenological analysis of 
0 1, we expect to find arbitrarily low values of R,M as kmin/ko -+ 0: for sufficiently small 
wavenumbers, the growth rate of the helicity instability, having a linear k dependence, 
will overcome the turbulent diffusivity rate. 

What happens now if there is little or no scale separation? Surprisingly we found 
that helicity is still a significant parameter in its ability to reduce RF (compare 
P = 0 and F = 1 in table 7) .  The fact that the critical magnetic Reynolds number is 
strongly reduced in helical turbulence, even when scale separation does not hold, 
should simplify further experimental and/or numerical investigations of the critical 
regime. This will be examined further in the following section. 

4. Summary, discussion and conclusion 
In  this paper we have addressed the problem of magnetic criticality in turbulent 

conducting flows. We now first summarize the results obtained in 3 3 using the eddy- 
damped quasi-normal Markovian (EDQNM) closure and then proceed to more 
general discussions and conclusions. 

The closure calculation assumes homogeneous isotropic three-dimensional MHD 
turbulence with periodic boundary conditions (the period L is thus the largest avail- 
able scale). Energy and (possibly) helicity are injected by prescribed random forces 
stirring the fluid at  scales FZ 1, (integral scale). The essential parameters of the problem 
are lo/L, the kinetic and magnetic Reynolds numbers RV = l,v,/v and RM = Z,v,/h 
and the relative rate of helicity injection i, defined by (3.9). The basic question is: 
when will an initially weak magnetic perturbation be amplified and lead to a steady 
state with non-vanishing magnetic energy? 

The main results are listed below: 
(1) In all cases, including non-helical turbulence, a stationary magnetic state 

exists when RM exceeds a critical value RF. In  the non-helical case, RF is typically 
of the order of a few tens. 

(2) Rf is asymptotically independent of RV when the latter is large enough. For 
example, RF N 25 for Ry = 44 and R f  N 29 €or RV := lo6 (1,IL = 0.25; no helicity). 

(3) In the non-helical case RF is asymptotically independent of L as 1,/L -+ 0. For 
example, RM N 80 for I, = L, RF 2: 29 for I,/L = 0.25 and RF 2: 27 for l,/L < 1. 

(4) In  the helical case (0 < liJ < l) ,  R," can become very small when the largest- 
scale L in the system greatly exceeds the integral scale I,. There is good evidence that 
RF -+ 0 as Z,/L -+ 0 as suggested by the phenomenological analysis of 3 1. For example 
when i = 1 (maximal helicity injection) and I,/L = 8 x we obtain R,M 2: 0.3. 
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More surprising, we found that, when 1, and L are comparable, helicity still strongly 
affects the value of RF; for example with 1, = L, the critical magnetic Reynolds 
number drops by a factor of 6 when the relative helicity injection rate varies from 0 
to  1.  

(5) Above RF a non-zero magnetic energy EM (per unit mass) obtains, the kinetic 
energy EV drops and so does the total energy ET = Ev+ EM (see figure 1). For 
example, a t  RM = 35 in a situation where RF N 29, P = 0, l,/L = 0.25, the kinetic 
energy is down by 28 yo from its subcritical value and the total energy is down by 
13 yo. A substantial decrease of the turbulent transport coefficients of heat, momen- 
tum, etc. is therefore expected. 

(6) Near RF, the behaviour of EM can be empirically represented by a power law, 
EM cc (A, - A)B (p N 0.68 -+_ 0.05, possibly equal to  2/3). 

(7) The kinetic-energy spectrum EE which follows a Kolmogorov k-* law below 
R,“ changes over, immediately above RF, to a much steeper power law with an expo- 
nent m -N 2.4. The magnetic-energy spectrum EF has an exponent m’ N m + 2 (see 
figure 3). 

Concerning all the above results, we must stress that their qualitative aspects (e.g. 
the more or less pronounced effect of varying the parameters) seem much more 
reliable than their quantitative aspects (e.g. the precise value of RF for a given set 
of parameters), since they are not derived from the primitive MHD equations. It is 
clear that our study, based on a closure, leaves room for improvement. A first step 
would be to resort to direct numerical simulation of the MHD equations without 
leaving the framework of homogeneous isotropic, randomly driven turbulence with 
periodic boundary conditions. I n  the non-turbulent kinematical case such calculations 
have already been made and produced critical magnetic Reynolds numbers of the 
order of 10 for two velocity modes (Roberts 1972). I n  the turbulent case, assuming 
that result 2 above carries over to  the primitive equations, calculations a t  kinetic 
Reynolds numbers of the order of 40 should give (within less than 20 yo) the critical 
magnetic Reynolds number corresponding to the limit RV -+ co. Kinetic Reynolds 
numbers of the order of 40 are precisely within the range accessible to existing high- 
speed computers. We recall that Pouquet & Patterson (1978) have made a simulation 
of the MHD equations with RV and RA1 up to 30 (3Z3 grid points). They did not in- 
vestigate criticality (no random force to drive the flow), but some of their results 
indicate that a seed magnetic field can be substantially amplified a t  such Reynolds 
numbers. On the CDC 7600 which they used, a typical run took about one hour and 
required a considerable amount of data management. On a fast vectorized computer 
such as CRAY 1, a 323 MHD calculation can be made entirely in core and requires 
less than one minute per turnover time ; for a dynamo run several tens of turnover 
times are needed. Furthermore, a 6g3 calculation becomes now accessible (again with 
extensive data management and run times of the order of ten hours or more). At this 
resolution the Reynolds number can probably be pushed from 30 (corresponding to 
323) to  30 x 2* or 30 x 23 before truncation effects are fe1t.t 

Such magnetic Reynolds numbers are in all probability supercritical in the non- 
helical case (if criticality obtains a t  a11 in homogeneous turbulence) and are most 

-f The former value (76) is based on the Rolmogorov (1941) assumption that the dissipation 
wavenumber scales like the $th power of the Reynolds number; the latter value (85)  is based 
on Kraichnan’s (1965) modification for MHD. 
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certainly supercritical in the helical case. Simulations can also be used to investigate 
other interesting phenomena outside the scope of the EDQNM closure: is there a sym- 
metry breaking mechanism leading to a preferred direction of the supercritical mag- 
netic field (as in the ferromagnetic phase transition) ? Is the transition sharp (as in the 
closure calculation or in condensed-matter critical phenomena) or will the magnetic 
field appear in the form of intermittent bursts with RF possibly equal to zero when 
the forcing is Gaussian? 

We come now to the more speculative question of the possible inferences of our 
results for 'realistic ' flows with boundaries, inhomogeneities, mean flow, etc. For 
non-magnetic turbulence at  high Reynolds numbers, there is good evidence that the 
small-scale motion away from boundaries is adequately described as homogeneous 
isotropic turbulence. In  the supercritical MHD case, homogeneity will also probably 
hold at  small scales but isotropy need not (because a large-scale magnetic field, unlike 
a large-scale velocity field, cannot be gauged out by a Galilean transformation). At 
such scales, where the local magnetic Reynolds number is small, existing experimen- 
tal results on low magnetic Reynolds number turbulence with an external magnetic 
field (Alemany et al. 1979) may become relevant (see Q 3). What about the large scales 
which are, near RF, mostly responsible for magnetic field generation? We feel con- 
fident that most of the closure-based qualitative results will carry over to realistic 
flows. In  particular we expect (and conjecture) that RT can be substantially decreased 
by making the flow helical, including in the case when there is no clear-cut separation 
between the integral scale of the turbulence and the overall scale of the flow. Con- 
cerning actual values of R,M for realistic flows we cannot make any predictions. We 
just wish to point out that critical magnetic Reynolds numbers in the same range 
(10 to lo2) as in the present study are obtained in kinematic dynamo calculations 
with prescribed non-turbulent velocity fields and non-periodic (generally spherical) 
geometry (Gubbins 1973; Pekeris et al. 1973). 

A particularly important class of 'realistic' flows, which indirectly motivated the 
present study, are found in large-scale liquid-sodium cooling circuits of breeder reactors 
(Vendryes 1977). For Superphenix, under construction at Malville (France), the 
magnetic Reynolds number RE, in the secondary pumps, based on L = 2.5 m, 
maximum velocity V = 5 m s-I, and magnetic diffusivity h = 0.16 m2 s--1 (operating 
temperature 345 "C) will be RF = 79. We do not see how to rule out criticality under 
such conditions. It is noteworthy that the primary circuit flow is helical at  small 
scales in the core because spacing of fuel pins is ensured by helical wires; there may 
also be some large-scale helicity induced by either the pumps or the coils of the heat 
exchangers. Furthermore, as noticed by R. Moreau (1979, private communication), 
the magnetic Reynolds number based on the overall size of the primary liquid-sodium 
circuit is of the order of 100 and there may be co-operative effects between different 
portions of the circuit. 

Let; us tentatively examine some of the possible consequences of supercriticality 
(in the magnetic, not the nuclear sense). Steady or fluctuating magnetic fields of the 
order of 100 gauss may be present as soon as RF is exceeded by more than a few per cent 
(this is based on the observation that, with a mean velocity of 1 m s-1, equipartition of 
kinetic and magnetic energy at  400 "C occurs for 330 gauss). Such fields may lead to 
problems with the control system (in electromagnetic flowmeters for example), pressure 
drops, additional oscillations and vibrations (especially if the magnetic field comes in 
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bursts) and possibly extra corrosion induced by electric currents. Some of these 
problems have already been mentioned by Bevir (1973). Furthermore the drop in 
kinetic energy, which will most certainly accompany magnetic-energy generation, 
may result in decreased efficiency of heat transfer, thereby requiring more energetic 
pumping to remove the energy released in the core. 

There are at least two methods that can be helpful in finding out whether or not a 
given reactor will be in the supercritical regime: numerical simulation and extrapola- 
tion of subcritical experiments on relaxation of magnetic perturbations. 

Numerical simulations to find RY can be done in the kinematic dynamo framework. 
Determination of the full subcritical velocity field, to feed into such a calculation, 
appears neither feasible nor necessary. The mean flow which possesses rather strong 
gradients in places (pumps, bends, entrance and exit points from main vessel) may be 
sufficient to trigger self-excitation. The main difficulties will come from the need to 
accommodate complicated boundary conditions (portions or the entirety of the 
primary circuit can be simulated) and to have sufficient resolution to push R M  to 
critical values without truncation effects. 

In  attempting to experimentally determine the critical value of the magnetic 
Reynolds number, the following observation may be of use: in the subcritical regime 
R M  < RY (but not too far from RY), the rate of relaxation of an externally imposed 
magnetic perturbation depends linearly? on the magnetic diffusivity h and vanishes 
at  the critical value. RF can then be determined by extrapolation. This method has 
been suggested by W. Malkus (private communication). He used it in trying to deter- 
mine RF for a flow in a rotating and precessing sphere (unpublished results corre- 
sponding to the liquid-sodium version of the experiment reported inMalkus 1968). This 
procedure might be usefully attempted with the scaled-down version of Superphenix, 
the Phenix breeder which operates at Marcoule (France) with magnetic Reynolds 
numbers about half of those of the Superphenix breeder. As noticed by Bevir (1973), 
decreasing the sodium temperature from 400 "C to, say, 150 "C will decrease the 
magnetic diffusivity by roughly a factor 2. The magnetic Reynolds number of Phenix 
can thus be brought to a value closer to the Superphenix operating conditions. 
Alternatively, one can set up liquid-sodium experiments specifically designed to study 
magnetic criticality (Gailitis & Freiberg 1977). The results suggest that the scaling up 
from Phenix to Superphenix may produce adverse consequences; it does not seem 
possible, in the present state of knowledge, to prove that this will not happen. 

We are indebted to F. Busse, R. Kraichnan, 0. Lielausis, R. Moreau, P.-L. Sulem 
and W. Malkus for useful discussions. We wish particularly to thank D. Gillet who 
performed most of the helical calculations. The helpful observations of the referees 
are acknowledged. 

t This simply expresses the fact that there is a crossing of zero by the real part of an eigen- 
value of the induction operator in equation (1.2). Since this operator is linear in h, the range 
over which this eigenvalue is approximately linear may be greater in the variable h than in its 
inverse, R M .  
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Appendix 

Pouquet et al. (1976); they can be written in the following form: 
The EDQNM spectral equations for helical MHD turbulence were derived in 

(a/at + 2vk2) EL = g'ky +d[ EL + cg[ HZ + F [ ,  

(a/&++2vk2)Hg = @ +k22gEK+d[H'ky+p(kV, 

(a/at+2hk2) EfE" = g f E " + d f E f + k 2 g f H f ,  

(a/at+2hE2) H f  = 3 f + J f E p + & p H f ,  

(A 1 )  

(A 2)  

(A 3) 

(A 4) 

where a tilde denotes a pseudo-scalar quantity. 
The emission and absorption terms are given by 

- 
A? f = k-IjAk dp  dq 8K&(ekpqp3qHf - hkpqp2HF), (A 12) 

The different terms used in these expressions are defined below: EL and EfE" are the 
kinetic- and magnetic-energy spectra, the total energy per unit mass being 

J O  
H'ky is the kinetic helicity spectrum with 

${v. curl v )  = JOm Hgdk; 

and H f  is the magnetic helicity spectrum with 

Q(a . b} = Iom d k H p ;  

where a is the vector potential (b = curl a). 
The kinetic energy and helicity are injected at rates E and 8, 
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FF and I;(kv are peaked at  k = k,, decreasing rapidly at high wavenumbers, 

FP - k4exp ( -  2(k/k0)2). 

In  the computations, e and k, are taken equal to unity. 

metric coefficients appearing in the equations above are 
Ak is a subset of the ( p ,  q)  plane such that k, p and q can form a triangle. The geo- 

bkpq = pk-'(XY+Z3), Ckpq = Pk-lz(l -'7J2), 

ekpq = X( 1 - Z 2 ) ,  f k p q  = Z - xy - 2Zy2, hkpq = 1 - y2, (A 17) 
where x, y ,  z are the cosines of the angles opposite to the sides k, p ,  q of the triangle. 

The EDQNM equations of second-order moments contain either purely kinetic or 
mixed (kinetic, magnetic) triple correlations for which we obtain two types of linear 
relaxation : the kinetic transfer terms involve only molecular viscosity, whereas all 
other transfers involve both molecular viscosity and magnetic diffusivity. In order to 
ensure realizability of the energy spectra we choose (see I) the kinetic and mixed triad 
relaxation rates ycpq and p ; .  to be symmetric in wavenumber, namely 

Pi& =PP+P:+P& 

where X stands for either V or V N ,  with 

(A 20) & M =  V p k  + hk2; 

C, = 0.26 gives a Kolmogorov constant of 1.4 in the absence of magnetic field. 
The triad relaxation times used in the EDQNM equations are then defined as usual by 

(A 21) X 
OkXpq = -exp ( - (t/&q))l/pkpq, 

with X = V or V M .  When h 9 u, i.e. for small magnetic Prandtl numbers, it  is im- 
portant to make a distinction between the two triad relaxation times Bv and BVM. 

The stationary equations for the kinetic and magnetic energy and helicity spectra 
are given below in the form used in the iterative scheme: 

Eg = [(a[ + Fg) ( -dc + 2uk2) + (@ +F:) dE]/9:, 
HE = [(ag + FK) k 2 J Q  - (9; + F'c) (4 - 2vka)]/9[, 

E f  = [aft -df + 2hk2) + k2Gf J P ] / g f ,  

(A 22) 

(A 23) 

(A 24) 

H f  = [Bf J f - Gf(df  - 2hk2)]/.GBf, 

9 g  = (dg- 2 ~ k ~ ) ~ -  k2(J[)2,  where 

9f = (df - 2hk2)2 - k2( af)2. (A 27) 

The EDQNM equations are used in this paper both in their helical form given above, 
and in their mirror-symmetric form (with all the Hv and HMterms set equal to zero). 
The non-helical equations can also be found in Krrtichnan & Nagarajan (1967). Note 
several differences between the equations in table 1 of I and in this appendix. The 
magnetic forcing terms F f  and pf are here identically zero. There were misprints 
in threa transfer terms of I which are corrected below. (We are grateful to Dr De Young 
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for pointing out to us those misprints.) They involved the expressions ofTLM, TI7,  TF’ 
which should read: 

A. 

Moreover, the constant C, (related to the Kolmogorov constant) should read: C, = 0.26 
(and not C, = 0.36). Finally, as indicated above, for a small magnetic Prandtl number, 
one has to take into account the magnetic diffusive damping time, thus introducing a 
modification in the triple correlation relaxation time Okpq. 
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Note added in proof (11 December 1980) 

Direct numerical simulations of the kind suggested in $4 have been performed 
recently. Gilman & Miller (preprint, High Altitude Observatory, Boulder, Colorado, 
1980) have obtained a nonlinear dynamo driven by thermal convection in a rotating 
spherical shell. Frisch, Meneguzzi & Pouquet (unpublished, 1980), using resolutions 
of 323 and 6q3 have obtained both helical and non-helical homogeneous dynamos at  
magnetic Reynolds numbers up to 100; the results are in good agreement with the 
closure predictions of the present paper and of paper I, and additional features, 
such as intermittency, are detected. 
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